Practical consideration for long DAPT based on patients and lesion selection

> Tullio Palmerini University of Bologna Italy

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

Grant/Research Support

Consulting Fees/Honoraria

DAPT trials: 18 RCTs

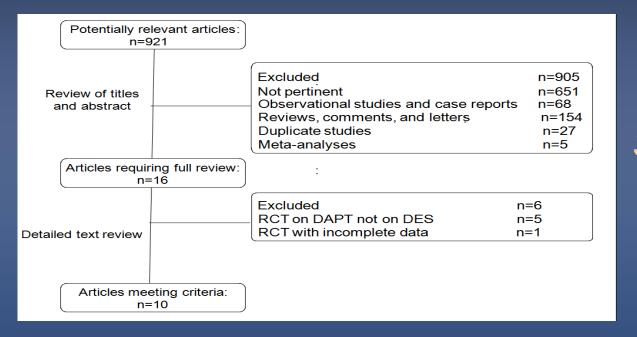
≤6 months vs ≥ 1 year (n=13)

- RESET
- OPTIMIZE
- REDUCE
- EXCELLENT
- ISAR SAFE
- SECURITY 5 RCT 6 months vs 1 year
- I LOVE IT
- IVUS XPL
- PRODIGY
 - ALICS 4 RCT 6 months vs > 1 year

3 RCT: 3 months vs 1 year

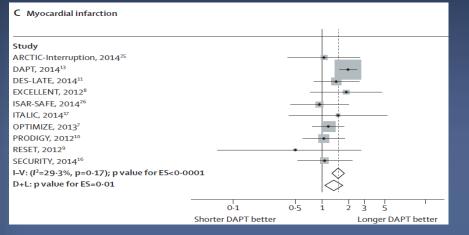
- NIPPON
- DAPT STEMI
- STOP DAPT 2
 1 month vs > 1 year

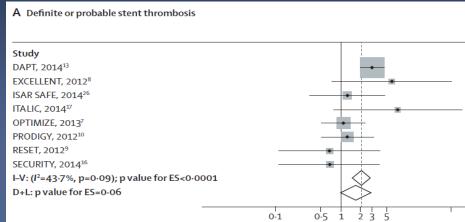
1 year vs > 1 year (n=5)


- DAPT trial
- DES LATE
- ARCTIC INTERRUPTION
- OPTIDUAL
- Dadjou et al

Mortality in patients treated with extended duration dual antiplatelet therapy after drug-eluting stent implantation: a pairwise and Bayesian network meta-analysis of randomised trials

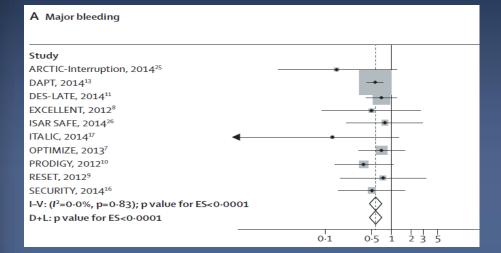
Tullio Palmerini, Umberto Benedetto, Letizia Bacchi-Reggiani, Diego Della Riva, Giuseppe Biondi-Zoccai, Fausto Feres, Alexandre Abizaid, Myeong-Ki Hong, Byeong-Keuk Kim, Yangsoo Jang, Hyo-Soo Kim, Kyung Woo Park, Philippe Genereux, Deepak L Bhatt, Carlotta Orlandi, Stefano De Servi, Mario Petrou, Claudio Rapezzi, Gregg W Stone

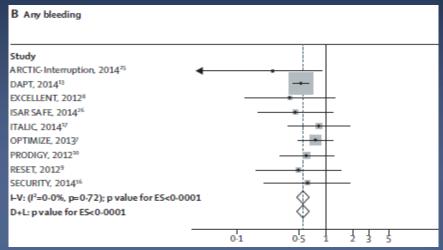



10 RCT 31,666 pts

Lancet 2015

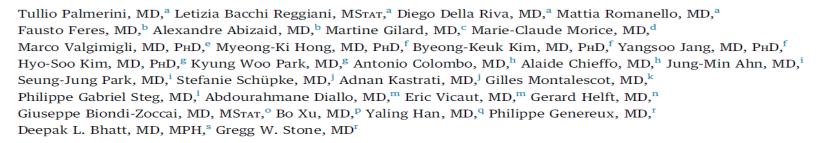
Prolonged DAPT: MI and ST





Palmerini et al; Lancet 2015

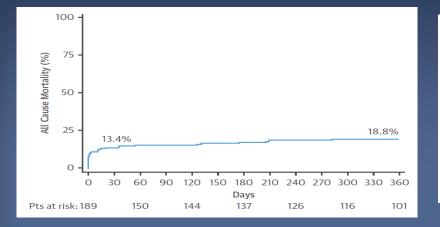
DAPT and bleeding

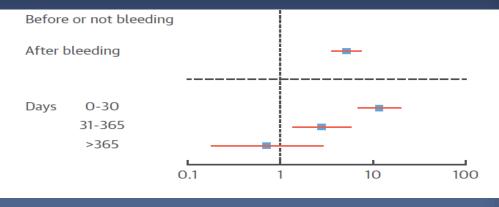


Palmerini et al; Lancet 2015

Bleeding-Related Deaths in Relation to the Duration of Dual-Antiplatelet Therapy After Coronary Stenting

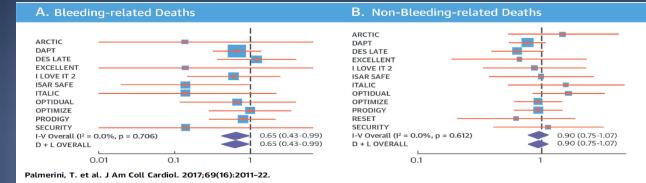
12 randomized studies with 34880 patients

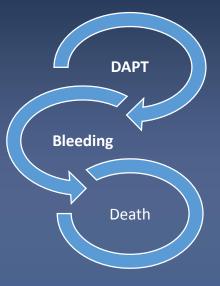

IPD for 6 randomized studies with 11473 patients



Palmerini et al, JACC 2017

Bleeding and mortality





Palmerini et al; JACC 2017

Mechanistic link between DAPT bleeding and mortality

Palmerini et al; JACC 2017

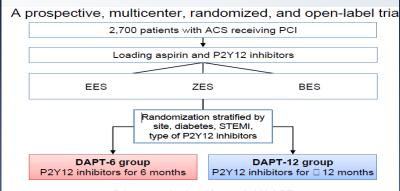
Ischemic vs bleeding risk

- Old age
- Recurrent ischemia
- Recurrent ST
- Complex CAD and PCI
- Diabetes
- PAD
- CKD
- ACS

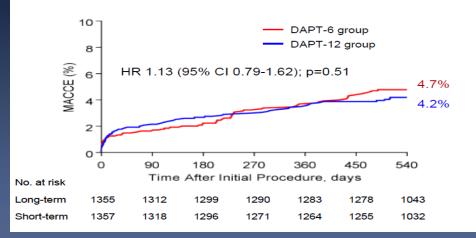
Shorter vs longer DAPT: the importance of tailoring DAPT

• Clinical presentation

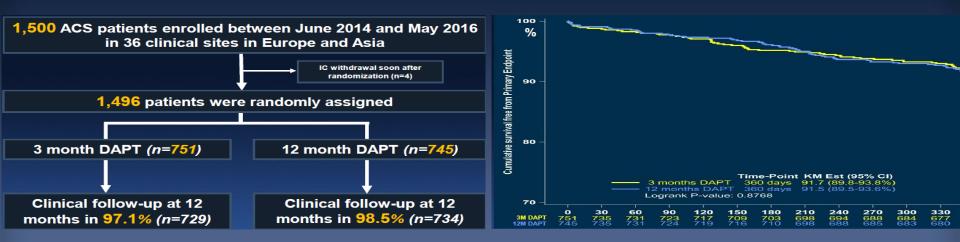
Diabetes
 DAPT Consortium (joint international collaboration)
 IPD of 6 randomized trials
 Exploring risk and benefit of DAPT in major subgroups

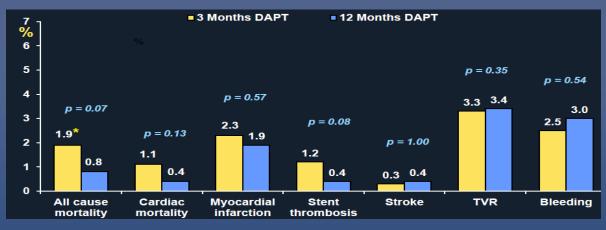

• Age

• Complexity of CAD



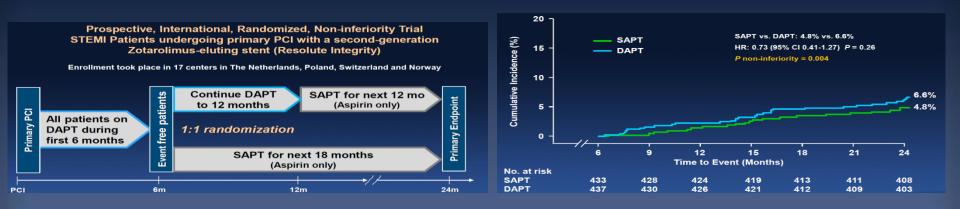
SMART DATE: 6-month vs 1-year DAPT


Primary endpoint: 18-month MACCE a composite of all-cause mortality, MI, and cerebrovascular events



	DAPT-6 group (n=1357)	DAPT-12 group (n=1355)	HR (95% CI)	p value
MACCE	63 (4.7%)	56 (4.2%)	1.13 (0.79-1.62)	0.51
Death	35 (2.6%)	39 (2.9%)	0.90 (0.57-1.42)	0.90
Myocardial infarction	24 (1.8%)	10 (0.8%)	2.41 (1.15-5.05)	0.02
Target vessel MI	14 (1.1%)	7 (0.5%)	2.01 (0.81-4.97)	0.13
Non-target vessel MI	10 (0.8%)	3 (0.2%)	3.35 (0.92-12.2)	0.07
Cerebrovascular accident (stroke)	11 (0.8%)	12 (0.9%)	092 (0.41-2.08)	0.84
Cardiac death	18 (1.4%)	24 (1.8%)	0.75 (0.41-1.38)	0.36
Cardiac death or MI	39 (2.9%)	32 (2.4%)	1.22 (0.77-1.95)	0.40
Stent thrombosis	15 (1.1%)	10 (0.7%)	1.50 (0.68-3.35)	0.32
Bleeding BARC type 2-5	35 (2.7%)	51 (3.9%)	0.69 (0.45-1.05)	0.09
Major bleeding (BARC type 3,4,or 5)	6 (0.5%)	10 (0.8%)	0.60 (0.22-1.65)	0.33
Net adverse clinical and cerebral events	96 (7.2%)	99 (7.4%)	0.97 (0.73-1.29)	0.84

REDUCE: 3-month vs 1-year DAPT



Suryapranata; TCT 2017

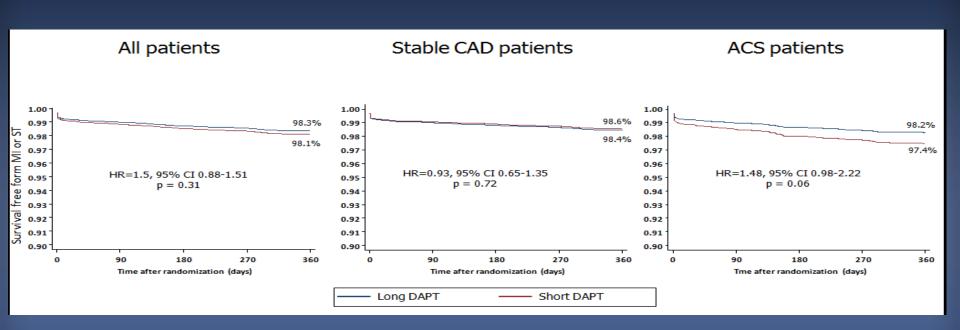
DAPT STEMI: 6-month vs 18 month DAPT

Of the expected 1000 patients only 870 were finally randomized The observed event rate (4.8%) was lower than the expected event rate (15%) The non-inferiority margin was relatively wide Any revascularizion was a component of the primary endpoint

Kedhi el al; BMJ 2018

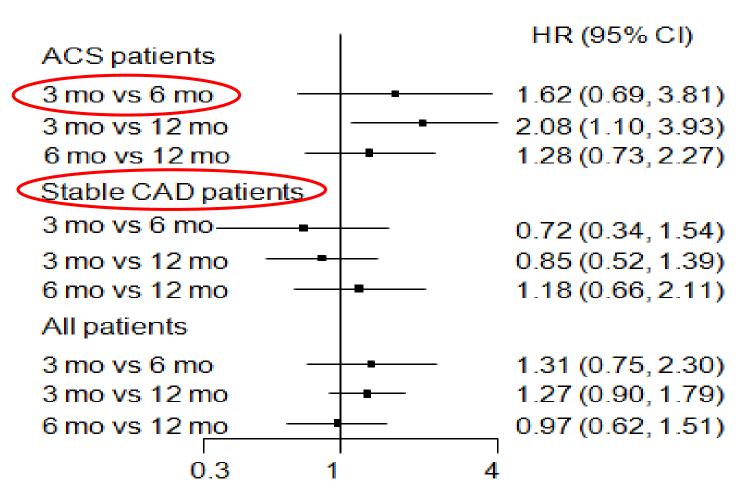
European Heart Journal Advance Access published January 21, 2017

European Heart Journal (2017) **0**, 1–10 doi:10.1093/eurheartj/ehw627 CLINICAL RESEARCH Interventional cardiology


Three, six, or twelve months of dual antiplatelet therapy after DES implantation in patients with or without acute coronary syndromes: an individual patient data pairwise and network meta-analysis of six randomized trials and 11 473 patients

Tullio Palmerini¹, Diego Della Riva¹, Umberto Benedetto², Letizia Bacchi Reggiani¹, Fausto Feres³, Alexandre Abizaid³, Martine Gilard⁴, Marie-Claude Morice⁵, Marco Valgimigli⁶, Myeong-Ki Hong⁷, Byeong-Keuk Kim⁷, Yangsoo Jang⁷, Hyo-Soo Kim⁸, Kyung Woo Park⁸, Antonio Colombo⁹, Alaide Chieffo⁹, Diego Sangiorgi¹, Giuseppe Biondi-Zoccai¹⁰, Philippe Généreux¹¹, Gianni D. Angelini², Maria Pufulete², Jonathon White¹¹, Deepak L. Bhatt¹², and Gregg W. Stone¹¹*

DAPT duration and clinical presentation

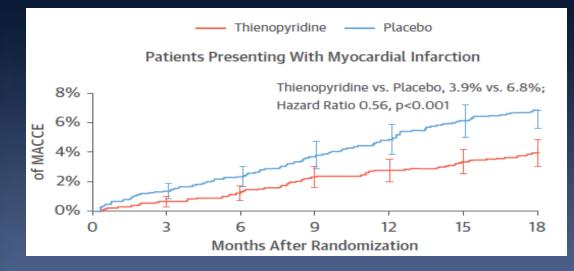


Palmerini et al; EHJ 2017

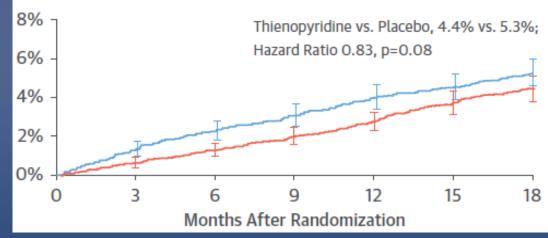
MI, ST

TCTAP 2019

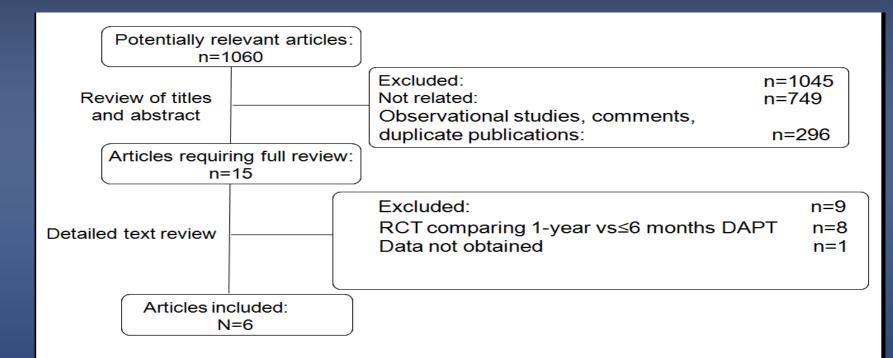
Palmerini et al; EHJ 2017


Summary of evidence

- In patients with ACS at least 1 year DAPT should be recommended, unless the patient is at high risk of bleeding
- In patients with SIHD 3 or 6 month DAPT are enough, unless the ischemic risk is very high

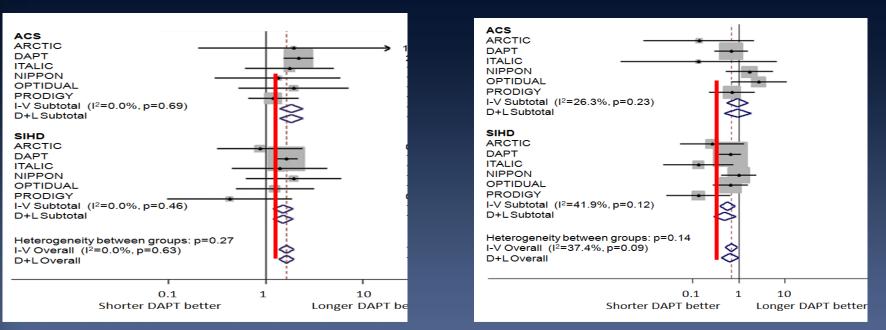


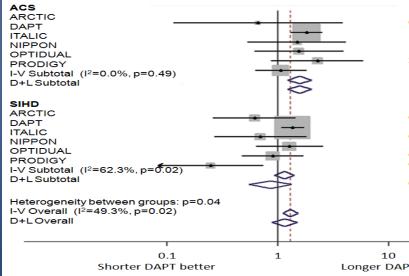
DAPT trial: ACS vs non ACS



Yeh et al; JACC 2015

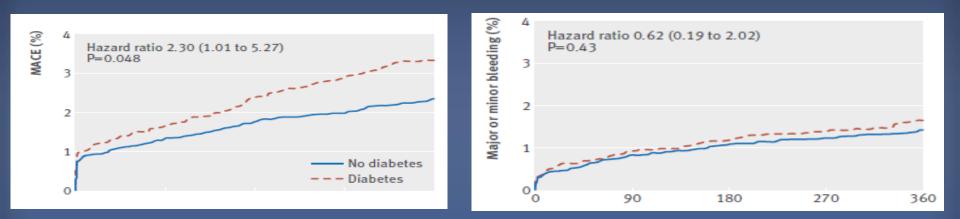
1-year or less versus longer than 1-year DAPT in patients stratified by clinical presentation


Aggregate data based meta-analysis including 6 RCTs and 21,457 patients 14,132 patients with SIHD and 7,325 patients with ACS Median follow up of 19.5 months



Myocardial infarction

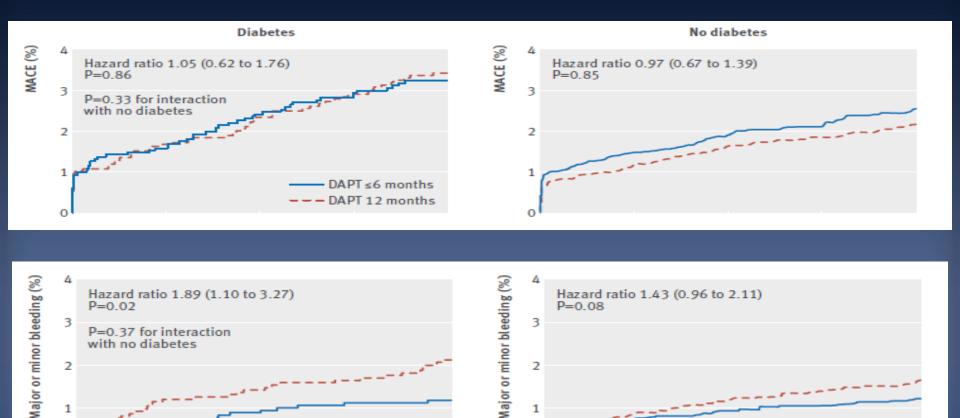
MI and bleeding



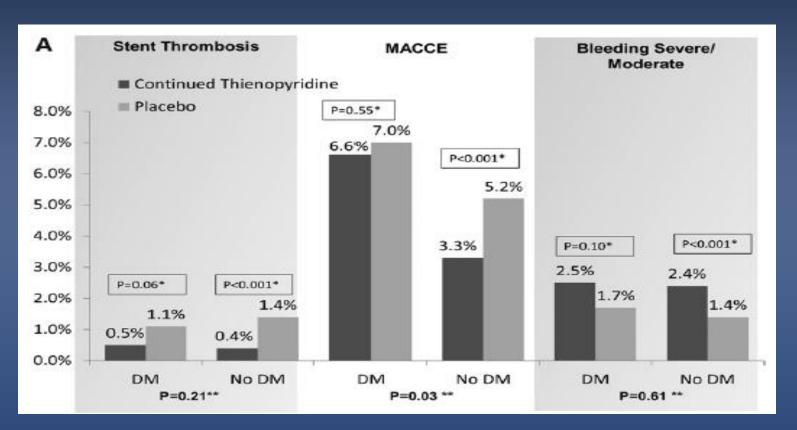
Longer DAP Palmerini et al; Circ Cv Int

Short term versus long term dual antiplatelet therapy after implantation of drug eluting stent in patients with or without diabetes: systematic review and meta-analysis of individual participant data from randomised trials

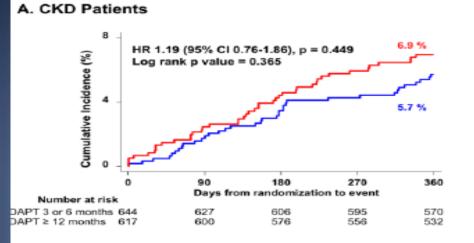
Giuseppe Gargiulo,^{1,2} Stephan Windecker,¹ Bruno R da Costa,^{1,3} Fausto Feres,⁴ Myeong-Ki Hong,⁵ Martine Gilard,⁶ Hyo-Soo Kim,⁷ Antonio Colombo,⁸ Deepak L Bhatt,⁹ Byeong-Keuk Kim,⁵ Marie-Claude Morice,⁶ Kyung Woo Park,⁷ Alaide Chieffo,⁸ Tullio Palmerini,¹⁰ Gregg W Stone,¹¹ Marco Valgimigli¹


BMJ 2016

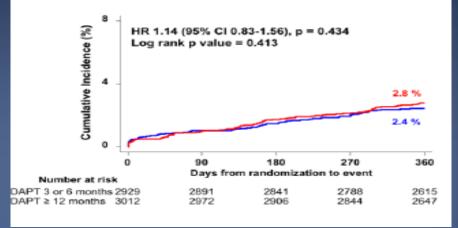
Prolonged DAPT and diabetes



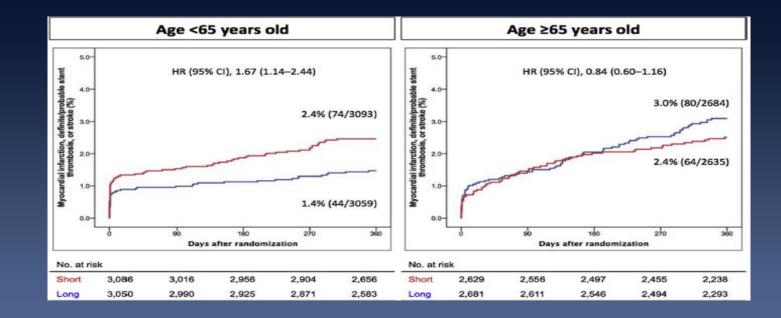
Gargiulo et al; BMJ 2016



Diabetes Mellitus and Prevention of Late Myocardial Infarction After Coronary Stenting in the Randomized Dual Antiplatelet Therapy Study


Ian T. Meredith, MBBS, PhD; Jean-François Tanguay, MD; Dean J. Kereiakes, MD;
Donald E. Cutlip, MD; Robert W. Yeh, MD, MSc; Kirk N. Garratt, MD; David P. Lee, MD;
P. Gabriel Steg, MD; W. Douglas Weaver, MD; David R. Holmes, Jr., MD;
Ralph G. Brindis, MD, MPH; Jaroslaw Trebacz, MD; Joseph M. Massaro, PhD;
Wen-Hua Hsieh, PhD; Laura Mauri, MD, MSc; on behalf of the DAPT Study Investigators

DAPT duration and CKD



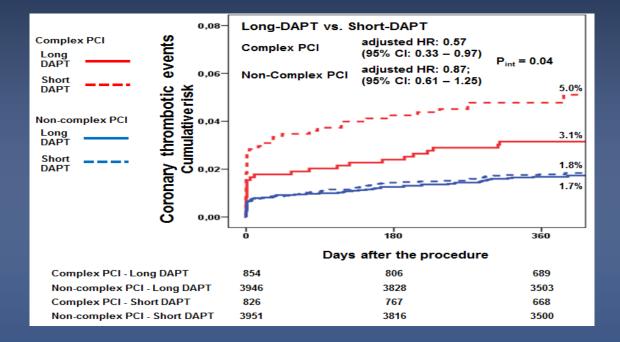
Hwang et al; American Heart Journ 2018

DAPT duration and age

TABLE 2 Clinical Outcomes at 12 Months According to Duration of DAPT in Patients' Age <65 Years of Age

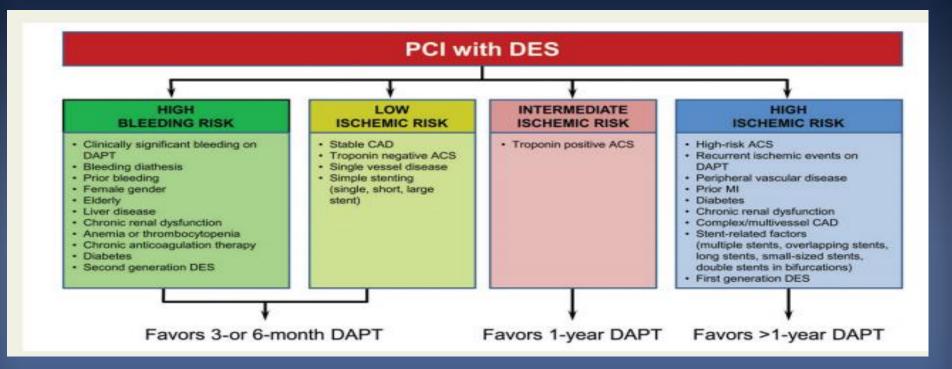
	≤6-Month DAPT (n = 3,093)	12-Month DAPT (n = 3,059)	Unadjusted HR (95% CI)	p Value
All-cause death	21 (0.7)	41 (1.3)	0.50 (0.30-0.85)	0.0097
Cardiac	13 (0.4)	25 (0.8)	0.51 (0.26-1.00)	0.0500
Noncardiac	8 (0.3)	16 (0.5)	0.49 (0.21-1.14)	0.0989
Myocardial infarction	60 (1.9)	37 (1.2)	1.59 (1.05-2.39)	0.0275
Definite or probable stent thrombosis	14 (0.5)	10 (0.3)	1.37 (0.61-3.09)	0.4447
Stroke*	9 (0.3)	6 (0.2)	-	-
eteeding	29 (0.9)	37 (1.2)	0.76 (0.47-1.24)	0.2724
Major	9 (0.3)	15 (0.5)	0.59 (0.26-1.34)	0.2073
Minor	21 (0.7)	22 (0.7)	0.93 (0.51-1.69)	0.8029
Myocardial infarction or definite/probable stent thrombosis	65 (2.1)	40 (1.3)	1.59 (1.07-2.35)	0.0214
Myocardial infarction, definite/probable stent thrombosis, or stroke	74 (2.4)	44 (1.4)	1.65 (1.13-2.39)	0.0089

TABLE 3 Clinical Outcomes at 12 Months According to Duration of DAPT in Patients ≥65 Years of Age


	≤6-Month DAPT (n = 2,635)	12-Month DAPT (n = 2,684)	Unadjusted HR (95% CI)	p Value
All-cause death	76 (2.9)	66 (2.5)	1.18 (0.85-1.64)	0.3231
Cardiac	45 (1.7)	42 (1.6)	1.11 (0.73-1.68)	0.6417
Noncardiac	31 (1.2)	24 (0.9)	1.31 (0.77-2.24)	0.3147
Myocardial infarction	41 (1.6)	55 (2.1)	0.77 (0.52-1.16)	0.2085
Definite or probable stent thrombosis	14 (0.5)	14 (0.5)	1.04 (0.49-2.17)	0.9271
Stroke	17 (0.7)	22 (0.8)	0.79 (0.42-1.48)	0.4607
Bleeding	39 (1.5)	63 (2.4)	0.63 (0.42-0.94)	0.0248
Major	13 (0.5)	29 (1.1)	0.46 (0.24-0.88)	0.0196
Minor	27 (1.0)	35 (1.3)	0.79 (0.48-1.31)	0.3585
Myocardial infarction or definite/probable stent thrombosis	47 (1.8)	58 (2.2)	0.84 (0.57-1.23)	0.3703
Myocardial infarction, definite/probable stent thrombosis, or stroke	64 (2.4)	80 (3.0)	0.82 (0.59-1.15)	0.2487

Lee et al; JACC Int 2018

Pooled analysis of EXCELLENT, ITALIC, OPTIMIZE, PRODIGY, RESET, SECURITY



Giustino et al; JACC 2016

One size does not fit all

Palmerini and Stone; EHJ 2016

Conclusions

- Compared to shorter DAPT longer DAPT is associated with reduced rates of MI and stent thrombosis, but increased rates of bleeding.
- A tailored approch is advisable when deciding the optimal DAPT wherein ischemic and bleeding risk are balanced in individual patients.
- Patients with ACS, young age, and complex multivessel CAD benefit from prolonged DAPT.

